Вещества меняющие цвет от света. Термохромная краска, меняющая цвет в зависимости от температуры: характеристики, применение. Наиболее яркие примеры использования хромии в практике в настоящее время
Все мы любым фокусы. Многие из нас знают несколько простых фокуса, которыми можно удивить друзей во время вечеринки или показать детям и рассмешить их. Сегодня мы сделаем своеобразный химический эксперимент, который также может стать красивым фокусом.
Давайте первым делом посмотрим видеоролик:
Итак, для того, чтобы приготовить нашу чудо жидкость, возможно придется сходить в аптеку, но уверяем вас – дело того стоит.
Нам понадобится:
- Два стакана одинаковых размеров;
- Два небольших стакана (можно из пластика);
- Емкость, в которую мы нальем теплую воду;
- Ложка, с которой мы будем перемешивать;
- Картофельный или кукурузный крахмал;
- Один грамм витамина C;
- Настойка йода;
- Перекись водорода (3%);
- Шприцы для более точного дозирования всех компонентов.
Если витамин C будет в виде таблеток, то их необходимо раздробить в порошок. Первым делом нам нужно добавить грамм витамина в пластиковый стакан и добавить 60 мл теплой воды.
Следующим делом следует приготовить жидкий крахмал, смешав одну чайную ложку крахмала в 150 мл холодной воды. Далее добавляем еще 150 мл горячей воды и хорошенько размешиваем.
Берем два одинаковых стакана и заливаем в них по 60 мл теплой воды.
В первый стакан добавляем 5 мл настойки йода и 10-12 мл жидкости с витамином C. После добавления жидкости с витамином, йод полностью обесцветится.
Во второй стакан добавляем 15 мл перекиси водорода и 7 мл жидкого крахмала.
Подготовительный этап окончен, а это значит, что можно переходить к самому фокусу. Берем стаканы и переливаем жидкость из одного в другой.
После этого нам остается поставить один стакан на стол и ждать. Жидкость вскоре изменит свой цвет на темный. В химии этот эксперимент известен как йодные часы. Если изложить суть эксперимента максимально доступным образом, то можно сказать, что это своеобразное противостояние между крахмалом, который превращает йод в темную жидкость и витамином C, который не дает это сделать. В конце концов витамин полностью расходуется и жидкость мгновенно меняет свой цвет. Магия удалась. Кстати если добавить в темную жидкость еще немного порошка витамина C, то жидкость опять обесцветится на некоторое время.
Пантелеев Павел Александрович
В работе даются объяснения возникновения цвета у различных соединений, а также исследуются свойства веществ-хамелеонов.
Скачать:
Предварительный просмотр:
Химия цвета. Вещества-хамелеоны
Секция: естествознание
Выполнил: Пантелеев Павел Николаевич,
Ученик 11 «А» класса
Средней общеобразовательной школы №1148
им. Ф. М. Достоевского
Преподаватель: Кармацкая Любовь Александровна
1. Введение. Стр.2
2. Природа цвета:
2.1. органических веществ; Стр.3
2.2. неорганических веществ. Стр.4
3. Воздействие среды на цвет. Стр.5
4. Вещества-хамелеоны. Стр.7
5. Экспериментальная часть:
5.1. Переход хромата в бихромат и обратно; Стр.8
5.2. Окислительные свойства солей хрома (VI); Стр.9
5.3. Окисление этанола хромовой смесью. Стр.10
6. Фотохромизм. Стр.10
7. Выводы. Стр.13
8.Список использованных источников. Стр.14
1. Введение.
На первый взгляд, может показаться трудным дать объяснение природы цвета. Почему вещества имеют разные цвета? Каким образом цвет вообще возникает?
Интересно, что в глубинах океана обитают существа, в теле которых течёт кровь голубого цвета. Одни из таких представителей – голотурии. При этом кровь рыб, выловленных в море, красная, подобно крови многих других крупных существ.
От чего же зависит цвет различных веществ?
Прежде всего, цвет зависит не только от того, как окрашено вещество, но и от того, как оно освещено. Ведь в темноте всё кажется чёрным. Цвет также определяют химические структуры, преобладающие в веществе: например, цвет листьев растений бывает не только зелёным, но и синим, фиолетовым и др. Это объясняется тем, что в таких растениях помимо хлорофилла, придающего зелёный окрас, преобладают и другие соединения.
Голубая кровь у голотурий объясняется тем, что у них в пигменте, обеспечивающим цвет крови, вместо железа содержится ванадий. Именно его соединения придают голубую окраску жидкости, содержащейся в голотуриях. В глубинах, где они обитают, содержание кислорода в воде очень мало и им приходится приспосабливаться к этим условиям, поэтому в организмах возникли соединения, совершенно иные, чем у обитателей воздушного окружения.
Но мы ещё не ответили на поставленные выше вопросы. В данной работе мы постараемся дать полные, развёрнутые ответы на них. Для этого следует провести ряд исследований.
Целью данной работы и будет дать объяснение возникновения цвета у различных соединений, а также исследовать свойства веществ-хамелеонов.
В соответствии с целью поставлены задачи
Вообще, цвет является результатом взаимодействия света с молекулами вещества. Этот результат объясняется несколькими процессами:
* взаимодействием магнитных колебаний светового луча с молекулами вещества;
* избирательным поглощением тех или иных световых волн молекулами с разными структурами;
* воздействием лучей, отражённых или прошедших через вещество, на сетчатку глаза или на оптический прибор.
Основой для объяснения цвета является состояние электронов в молекуле: их подвижность, способность переходить с одного энергетического уровня на другой, перемещаться от одного атома к другому.
Цвет связан с подвижностью электронов в молекуле вещества и с возможностью перехода электронов на ещё свободные уровни при поглощении энергии кванта света (элементарная частица светового излучения ).
Цвет возникает в результате взаимодействия квантов света с электронами в молекулах вещества. Однако, из-за того, что состояние электронов в атомах металлов и неметаллов, органических и неорганических соединениях различно, механизм появления цвета у веществ также отличается .
2.1 Цвет органических соединений.
У органических веществ , обладающих цветом (а далеко не все они имеют это свойство), молекулы схожи по своей структуре: они, как правило, большие, состоят из десятков атомов. Для возникновения цвета в этом случае значение имеют не электроны отдельных атомов, а состояние системы электронов всей молекулы .
Обычный солнечный свет - это поток электромагнитных волн. Световая волна характеризуется длиной – расстоянием между соседними максимумами или двумя соседними впадинами. Она измеряется в нанометрах (нм). Чем короче волна, тем больше её энергия, и наоборот.
Окраска вещества зависит от того, какие волны (лучи) видимого света оно поглощает. Если солнечный свет веществом совсем не поглощается, а отражается и рассеивается, то вещество будет казаться белым (бесцветным). Если же вещество поглощает все лучи, то оно кажется чёрным.
Процесс поглощения или отражения определённых лучей света связан с особенностями строения молекулы вещества. Поглощение светового потока всегда связано с передачей энергии электронам молекулы вещества. Если в молекуле содержатся s-электроны (образующие сферическое облако ), то для возбуждения их и перевода на другой энергетический уровень требуется большая энергия. Поэтому соединения, имеющие s-электроны, всегда кажутся бесцветными. В то же время p-электроны (образующие облако в форме восьмёрки ) возбуждаются легко, так как связь, осуществляемая ими менее прочная. Такие электроны содержатся в молекулах, имеющих сопряжённые двойные связи. Чем длиннее цепь сопряжения, тем больше p-электронов и тем меньше требуется энергии для их возбуждения. Если энергия волн видимого света (длины волн от 400 до 760 нм) будет достаточной для возбуждения электронов, то появляется окраска, которую мы видим. Лучи, затраченные на возбуждение молекулы, будут ей поглощаться, а непоглощённые будут восприниматься нами как окраска вещества .
2.2 Цвет неорганических веществ.
У неорганических веществ цвет обусловлен электронными переходами и переносом заряда от атома одного элемента к атому другого. Решающую роль здесь играет внешняя электронная оболочка элемента.
Как и в органических веществах, возникновение цвета здесь связано с поглощением и отражением света.
Вообще, окраска вещества складывается из суммы отражённых волн (или прошедших через вещество без задержки). При этом цвет вещества означает, что из всего диапазона длин волн видимого света им поглощаются определённые кванты. В молекулах окрашенных веществ энергетические уровни электронов расположены близко друг к другу. Например, вещества: водород, фтор, азот – кажутся нам бесцветными. Это происходит из-за того, что кванты видимого света не поглощаются ими, так как не могут перенести электроны на более высокий уровень. То есть, через эти вещества проходят ультрафиолетовые лучи, не воспринимаемые человеческим глазом, поэтому и сами вещества для нас не имеют цвета. У цветных веществ, например, хлора, брома, йода, электронные уровни расположены теснее друг к другу, поэтому кванты света в них способны перевести электроны из одного состояния в другое .
Опыт. Влияние иона металла на окраску соединений.
Приборы и реактивы: четыре пробирки, вода, соли железа(II), кобальта(II), никеля (II), меди (II).
Выполнение опыта. В пробирки наливаем 20-30 мл воды, вносим по 0,2 г солей железа, кобальта, никеля и меди и перемешиваем до растворения. Окраска раствора железа стала жёлтой, кобальта – розовой, никеля - зелёной, а меди – синей.
Вывод: Как известно из химии, структура этих соединений одинакова, однако они имеют различное число d-электронов: у железа – 6, у кобальта – 7, у никеля – 8, у меди – 9. Это число влияет на окраску соединений. Поэтому и видно различие в цвете.
3. Воздействие среды на цвет.
Ионы в растворе окружены оболочкой растворителя. Слой таких молекул, непосредственно примыкающих к иону, называют сольватной оболочкой .
В растворах ионы могут воздействовать не только друг на друга, но и на окружающие их молекулы растворителя, а те в свою очередь на ионы. При растворении и в результате сольватации возникает цвет у иона ранее бесцветного. Замена воды на аммиак углубляет цвет. Аммиачные молекулы деформируются легче и интенсивность окраски усиливается.
Теперь сравним интенсивность окраски соединений меди.
Опыт №3.1. Сравнение интенсивности окраски соединений меди.
Приборы и реактивы: четыре пробирки, 1-процентный раствор CuSO 4, вода, НCl, раствор аммиака NH 3, 10-процентный раствор гексацианоферрата(II) калия.
Выполнение опыта. В одну пробирку помещаем 4 мл CuSO 4 и 30 мл H 2 O, в другие две – 3 мл CuSO 4 и 40 мл H 2 O. Добавляем в первую пробирку 15 мл концентрированной НCl – появляется жёлто-зелёная окраска, во вторую – 5 мл 25-процентного раствора аммиака – появляется синяя окраска, в третью – 2 мл 10-процентного раствора гексацианоферрата(II) калия – наблюдаем красно-бурый осадок. В последнюю пробирку добавляем раствор CuSO 4 и оставляем для контроля.
2+ + 4Cl - ⇌ 2- + 6H 2 O
2+ + 4NH 3 ⇌ 2+ + 6H 2 O
2 2 + 4- ⇌ Cu 2 + 12 H 2 O
Вывод: При уменьшении количества реагента (вещества, участвующего в химической реакции ), необходимого для образования соединения, происходит увеличение интенсивности окраски. При образовании новых соединений меди происходит перенос заряда и изменение цвета.
4. Вещества-хамелеоны.
Понятие «хамелеон» известно, прежде всего, как биологический, зоологический термин, обозначающий пресмыкающееся, обладающее способностью менять окраску своего кожного покрова при раздражении, перемене цвета окружающей среды и т. п.
Однако «хамелеонов» можно встретить и в химии. Так в чём же связь?
Обратимся к химическому понятию:
Вещества-хамелеоны - это вещества, меняющие свою окраску в химических реакциях и свидетельствующие об изменениях в исследуемой среде. Выделяем общее – изменение цвета (окраски). Именно это и связывает данные понятия. Вещества-хамелеоны известны с давних времён. В старинных руководствах по химическому анализу рекомендуется использовать «раствор хамелеона» для определения в образцах неизвестного состава содержания сульфита натрия Na
2
SO
3
, пероксида водорода Н
2
O
2
или щавелевой кислоты Н
2
С
2
O
4
. «Раствор хамелеона» - это раствор перманганата калия КМnO
4
, который при химических реакциях, в зависимости от среды, меняет свою окраску по-разному. Например, в кислотной среде ярко-фиолетовый раствор перманганата калия обесцвечивается из-за того, что из перманганат-иона МnO
4
-
образуется катион, т.е.
положительно заряженный ион
Мn
2+
; в сильнощелочной среде из ярко-фиолетового МnO
4
- получается зелёный манганат-ион МnO
4
2-
. А в нейтральной, слабокислой или слабощелочной среде конечным продуктом реакции будет нерастворимый чёрно-бурый осадок диоксида марганца МnO
2
.
Добавим, что благодаря своим окислительным свойствам, т.е. способности отдавать электроны или забирать их у атомов других элементов, и наглядному изменению окраски в химических реакциях перманганат калия нашел широкое применение в химическом анализе.
Значит, в данном случае «раствор хамелеона» (перманганата калия) используется в качестве индикатора, т.е.
вещества, показывающего наличие химической реакции или изменения, произошедшие в исследуемой среде.
Существуют и другие вещества, называемые «хамелеонами». Мы рассмотрим вещества, содержащие элемент хром Cr.
Хромат калия - неорганическое соединение, соль металла калия и хромовой кислоты с формулой K 2 CrO 4 , жёлтые кристаллы, растворимые в воде.
Бихрома́т ка́лия (двухромовокислый калий, ка́лиевый хро́мпик) - K 2 Cr 2 O 7 . Неорганическое соединение, оранжевые кристаллы, растворимые в воде. Высокотоксичен.
5. Экспериментальная часть.
Опыт №5.1. Переход хромата в бихромат и обратно.
Приборы и реактивы: раствор хромата калия К 2 СrO 4 , раствор бихромата калия К 2 Cr 2 O 7 , серная кислота, гидроксид натрия.
Выполнение опыта. К раствору хромата калия добавляем серную кислоту, в результате происходит изменение окраски раствора из жёлтого в оранжевый цвет.
2К 2 CrO 4 + Н 2 SO 4 = К 2 Cr 2 O 7 + К 2 SO 4 + Н 2 О
К раствору бихромата калия добавляю щёлочь, в результате происходит изменение окраски раствора из оранжевой в жёлтую.
К 2 Cr 2 O 7 + 4NaOH = 2Na 2 CrO 4 + 2КOH + Н 2 О
Вывод: В кислой среде хроматы неустойчивы, ион жёлтого цвета превращается в ион Cr
2
O
7
2-
оранжевого цвета, а в щелочной среде реакция протекает в обратном направлении:
2 Cr
2
O
4
2-
+ 2Н
+
кислая среда
-
щелочная
среда
Cr
2
O
7
2-
+ Н
2
О.
Окислительные свойства солей хрома (VI).
Приборы и реактивы: раствор бихромата калия К 2 Cr 2 O 7 , раствор сульфита натрия Na 2 SO 3 , серная кислота H 2 SO 4 .
Выполнение опыта. К раствору К 2 Cr 2 O 7 , подкисленному серной кислотой, добавляем раствор Na 2 SO 3. Наблюдаем изменение окраски: оранжевый раствор стал зелёно-синим.
Вывод: В кислой среде хром восстанавливается сульфитом натрия от хрома (VI) до хрома (III): К 2 Cr 2 O 7 + 3Na 2 SO 3 + 4H 2 SO 4 = К 2 SO 4 + Cr 2 (SO 4 ) 3 + 3Na 2 SO 4 + 4H 2 O.
Опыт №5.4. Окисление этанола хромовой смесью.
Приборы и реактивы: 5%-ный раствор бихромата калия К 2 Cr 2 O 7 , 20%-ный раствор серной кислоты H 2 SO 4 , этиловый спирт (этанол).
Выполнение опыта: К 2 мл 5%-ного раствора бихромата калия приливаем 1 мл 20%-ного раствора серной кислоты и 0,5 мл этанола. Наблюдаем сильное потемнение раствора. Разбавляем раствор водой, чтобы лучше увидеть его оттенок. Получаем раствор жёлто-зелёного цвета.
К
2
Cr
2
O
7
+ 3C
2
H
5
OH+ H
2
SO
4
→
3CH
3
-CОН + Cr
2
О
3
+ K
2
SO
4
+ 4H
2
O
Вывод: В кислотной среде этиловый спирт окисляется бихроматом калия. При этом образуется альдегид. Этот опыт показывает взаимодействие химических хамелеонов с органическими веществами.
Опыт 5.4. наглядно иллюстрирует принцип, по которому действуют индикаторы для обнаружения алкоголя в организме. Принцип основан на специфическом ферментативном окислении этанола, сопровождающегося образованием пероксида водорода (Н 2 О 2 ), вызывающего образование окрашенного хромогена, т.е. органического вещества, содержащего хромофорную группу (хим. группа, состоящая из атомов углерода, кислорода, азота).
Таким образом, эти индикаторы визуально (по цветовой шкале) показывают содержание алкоголя в слюне человека. Они применяются в медицинских учреждениях, при установлении фактов употребления алкоголя и алкогольного опьянения. Область применения индикаторов – любая ситуация, когда необходимо установить факт употребления алкоголя: проведение предрейсовых осмотров водителей транспортных средств, выявление нетрезвых водителей на автодорогах автоинспекцией, использование при экстренной диагностике, как средство самоконтроля и др.
6. Фотохромизм.
Познакомимся с интересным явлением, где также происходит изменение цвета веществ, фотохромизмом.
Сегодня очками со стеклами-хамелеонами вряд ли кого-то удивишь. Но история открытия необычных веществ, меняющих свой цвет в зависимости от освещенности, очень интересна. В 1881 году английский химик Фипсон получил от своего друга Томаса Гриффита письмо, в котором тот описывал свои необычные наблюдения. Гриффит писал, что входная дверь почты, расположенной напротив его окон, в течение дня меняет свой цвет - темнеет, когда солнце в зените, и светлеет в сумерках. Заинтересовавшись сообщением, Фипсон исследовал литопон - краску, которой была окрашена дверь почты. Наблюдение его друга подтвердилось. Фипсон не смог объяснить причину явления. Однако обратимой цветной реакцией не на шутку заинтересовались многие исследователи. И в начале ХХ века им удалось синтезировать несколько органических веществ, названных "фотохромами", то есть "светочувствительными красками". Со времен Фипсона ученые многое узнали о фотохромах – веществах, меняющих окраску под действием света.
Фотохромизм, или тенебресценция - явление обратимого изменения окраски вещества под действием видимого света, ультрафиолета.
Воздействие света вызывает в фотохромном веществе , атомарные перестройки, изменение заселённости электронных уровней. Параллельно с изменением цвета вещество может менять показатель преломления, растворимость, реакционную способность, электропроводимость, другие химико-физические характеристики. Фотохромизм присущ ограниченному числу органических и неорганических, природных и синтетических соединений.
Различают химический и физический фотохромизм:
- химический фотохромизм: внутримолекулярные и межмолекулярные обратимые фотохимические реакциями (таутомеризация (обратимая изомерия), диссоциация (расщепление), цис-транс-изомеризация и др.);
- физический фотохромизм: результат перехода атомов или молекул в разные состояния. Изменение окраски в этом случае обусловлено изменением заселённости электронных уровней. Такой фотохромизм наблюдается при воздействии на вещество только мощных световых потоков.
Фотохромы в природе:
- Минерал тугтупит способен менять цвет от белого или бледно-розового до ярко-розового.
Фотохромные материалы
Существуют следующие типы фотохромных материалов: жидкие растворы и полимерные плёнки (высокомолекулярные соединения ), содержащие фотохромные органические соединения, стекла с равномерно распределёнными в их объёме микрокристаллами галогенидов серебра (соединения серебра с галогенами ), фотолиз (распад под действием света ) которых обусловливает фотохромизм; кристаллы галогенидов щелочных и щёлочно-земельных металлов, активированные различными добавками (например, CaF 2 /La,Ce; SrTiO 3 /Ni,Mo).
Эти материалы применяются в качестве светофильтров переменной оптической плотности (т. е. регулируют поток света) в средствах защиты глаз и приборов от светового излучения, в лазерной технике и т.д.
Фотохромные линзы
Фотохромная линза на свету, частично прикрытая бумагой. Между светлой и темной частями виден второй уровень цвета, так как фотохромные молекулы расположены на обеих поверхностях линзы поликарбоната и других пластмасс . Фотохромные линзы обычно темнеют в присутствии ультрафиолета и светлеют при его отсутствии меньше чем за минуту, но полный переход из одного состояния в другое происходит от 5 до 15 минут.
Выводы.
Итак, цвет различных соединений зависит:
*от взаимодействия света с молекулами вещества;
*у органических веществ цвет возникает в результате возбуждения электронов элемента и их перехода на другие уровни. Важно состояние системы электронов всей большой молекулы;
*у неорганических веществ цвет обусловлен электронными переходами и переносом заряда от атома одного элемента к атому другого. Большую роль играет внешняя электронная оболочка элемента;
*на окраску соединения влияет внешняя среда;
*важную роль играет число электронов в соединении.
Список использованных источников
1. Артеменко А. И. «Органическая химия и человек» (теоретические основы, углублённый курс). Москва, «Просвещение», 2000.
2. Фадеев Г. Н. «Химия и цвет» (книга для внеклассного чтения). Москва, «Просвещение», 1977.
§5. Зачем нужны индикаторы?
Когда среда кислая , у раствора кислый вкус и в нем избыток катионов водорода (оксония), когда щелочная - в растворе избыток гидроксидных анионов. Если в растворе катионов оксония и гидроксид-анионов поровну, то среда считается нейтральной. Катионы H + и анионы OH − непрерывно борются за первенство, а быстро определить, кто в их состязании победитель, нам помогают "судьи" этой "олимпиады" - кислотно-основные индикаторы .
Индикаторы - значит "указатели". Это вещества, которые меняют цвет в зависимости от того, попали они в кислую, щелочную или нейтральную среду. Больше всего распространены индикаторы лакмус, фенолфталеин и метилоранж .
Самым первым появился кислотно-основный индикатор лакмус . Лакмус - водный настой лакмусового лишайника, растущего на скалах в Шотландии. Этот индикатор случайно открыл в 1663 году английский химик и физик Роберт Бойль . Позднее настоем лакмуса стали пропитывать фильтровальную бумагу; ее высушивали и получали таким способом индикаторные "лакмусовые бумажки", синие в щелочном и красные в кислом растворах .
Фенолфталеин , который применяется в виде спиртового раствора, приобретает в щелочной среде малиновый цвет, а в нейтральной и кислой он бесцветен . Что касается индикатора метилоранжа , или иначе "метилового оранжевого", он действительно оранжевый в нейтральной среде. В кислотах его окраска делается розово-малиновой, а в щелочах - желтой .
Если нет настоящих химических индикаторов, для определения кислотности среды можно успешно применять… домашние, полевые и садовые цветы и даже сок многих ягод - вишни, черноплодной рябины, смородины. Розовые, малиновые или красные цветы герани , лепестки пиона или цветного горошка станут голубыми, если опустить их в щелочной раствор. Так же посинеет в щелочной среде сок вишни или смородины . Наоборот, в кислоте те же "реактивы" примут розово-красный цвет. Растительные кислотно-основные индикаторы здесь - красящие вещества по имени антоцианы . Именно антоцианы придают разнообразные оттенки розового, красного, голубого и лилового многим цветам и плодам.
Красящее вещество свеклы бетаин в щелочной среде обесцвечивается, а в кислой - краснеет. Вот почему такой аппетитный цвет у борща с квашеной капустой.
Новым способом минимизации ущерба от неисправностей в различных конструкциях может стать разработка усовершенствованных методов для обнаружения повреждений до того момента как они становятся критическими. И в этом на помощь могут прийти материалы, которые меняют цвет при их повреждении.
Добавление специальных наночастиц в прозрачную полимерную смолу приводит к созданию "умного" материала , который меняет цвет при повреждении или же когда его состояние близко к разрушению. Такие материалы и назвали "материалами с изменчивым характером" (англ. " mood ring materials ", дословно – материалы для кольца настроения, которое меняет цвет в зависимости от температуры человека) объяснил Коул Брубэкер, докторант в лаборатории систем надежности (LASIR) университета Вандербильта (Vanderbilt University).
Материал меняет цвет в ответ на механическое воздействие.
Интеллектуальные технологии мониторинга являются в настоящее время одними из самых изучаемых вопросов в гражданской, механической и аэрокосмической технике. Эти вопросы в основном решаются разработкой сетей физических датчиков, которые прикрепляются к представляющим интерес конструкциям. Но данный подход имеет недостатки в виде высокой стоимости оборудования и сложной обработки полученных данных.
Исследователи LASIR пошли другим путем и включают люминесцентные наночастицы в сам материал, которые реагируют на механическое воздействие изменением своих оптических свойств. Такой подход позволяет создать новый тип системы мониторинга, которая является эффективной и экономически выгодной.
"В настоящее время существуют два способа, чтобы поддерживать все инфраструктурные объекты, от мостов до воздушных судов, в безопасности", - говорят исследователи. - "Один из них, когда люди постоянно проводят непосредственный осмотр конструкций. Проблема с этим состоит в том, что данный способ является трудоемким и люди не могут видеть очень маленькие трещины. Другой способ заключается во внедрении в контролируемый объект сложных сетей датчиков, которые непрерывно оценивают состояние конструкции и ищут небольшие трещины и обнаруживают их до того как они становятся слишком большими и начинают сказываться на безопасности конструкции. Проблема состоит в том, что такие сети являются очень дорогими и, в случае воздушных судов, добавляют много веса. Поэтому нам нужно каким-то образом изменить материалы, которые мы используем, чтобы выявить эти крошечные трещины."
Первоначальные исследования команды, показали, что добавление крошечных концентраций специальных наночастиц (от 1 до 5 процентов по массе) к оптически прозрачной полимерной матрице приводит к характерному изменению оптических свойств материала при воздействии на него широкого спектра сжимающих и растягивающих нагрузок.
Группа исследователей из университета Вандербильта не единственные кто использует наночастицы для создания "умных" материалов, но у них есть преимущество. Они используют особый тип наночастиц, называемый квантовая точка белого света. Эти квантовые точки являются уникальными, поскольку они излучают белый свет там, где другие квантовые точки только излучают свет на определенных длинах волн.
Эти специальные квантовые точки были случайно обнаружены в 2005 году в университете Вандербильта в ходе изучения квантовых точек на основе селенида кадмия.
Квантовые точки белого света обладают уникальными оптическими свойствами по сравнению с другими наночастицами, поскольку свечение белого света является поверхностным явлением. Когда такие наночастицы помещают в материал, то они реагируют на то, что происходит вокруг них.
В ходе предварительных испытаний стекловолокно и алюминиевые полосы покрывали полимерным покрытием, содержащим квантовые точки белого света, и подвергали их внешним нагрузкам различной интенсивности. Они установили, что интенсивность спектра излучения, испускаемого квантовыми точками, уменьшается по мере увеличения нагрузки.
График показывает, что спектр белого света квантовых точек в эпоксидной смоле на алюминиевых полосах уменьшается при увеличении растягивающей нагрузки на полосе.
(LASIR Lab / Vanderbilt)
"В механизме явления еще много неясного, но мы показали, что добавление этих квантовых точек в ультратонкие полимерные покрытия на металлических поверхностях может обеспечить заблаговременное предупреждение, когда основной металл получает какое-либо повреждение," – сказали исследователи.
Исследователи полагают, что квантовые точки излучают свет в широком спектре, потому что более чем 80 процентов атомов лежат на поверхности. Они также знают, что связь между поверхностными атомами и окружающими их молекулами играет решающую роль.
Таким образом, исследователи подтвердили, что материал может выступать в качестве нового вида тензодатчика, который постоянно регистрирует механическое воздействие на него.
Исследователи столкнулись и с рядом сложностей. Например, в ряде тестов эпоксидные цилиндры при сжатии деформировались в бочкообразную форму, а спектр излучения фактически увеличивался, а не уменьшался. Исследователи предполагают, что это произошло потому, что деформация сдавливала наночастицы ближе друг к другу и их концентрация в области деформации возрастала.
Кроме этого есть еще одна проблема, которую они должны будут решить, чтобы сделать работоспособную систему обнаружения повреждений. Квантовые точки страдают от засветки. То есть, когда они подвергаются воздействию света, они постепенно уменьшают свечение с течением времени. В результате, такой материал должен быть защищен от внешнего света.
"Существует много проблем, которые необходимо решить, прежде чем мы сможем создать "умный" материал, который готов к реальным приложениям, но тенденция положительна," – говорят исследователи.
С развитием современных технологий появилось огромное множество уникальной продукции, несущей декоративный эффект. И к таким товарам можно смело относить термохромные краски. Они прекрасно подходят для создания сувениров и уникальных вещей бытового характера. Также прекрасно зарекомендовали себя в создании детской посуды, поскольку способны сообщать о температуре еды. В целом сфера использования термохромной продукции достаточно велика, и с каждым годом она все больше вливается в обиход жизни современных людей. Уникальные свойства краски позволяют применять ее где угодно, ведь она не несет вред человеку и может выполнять как декоративные, так и практические функции.
Основные сведения
В составе термохромных красок содержатся специальные пигменты, которые реагируют на изменение температуры. То есть при соприкосновении с горячим или холодным объектом краска полностью меняет свой внешний вид. Каждый пигмент представляет собой микрокапсулу, которая, собственно, и провоцирует изменение цвета, влияя на весь предмет в целом. Диапазон температурного влияния достаточно велик. В зависимости от целей, которые преследует человек, краска может меняться при температуре от -15 до +70 градусов.
Существует обратимая и необратимая термохромная краска, состав играет основную роль в этой классификации. В случае обратимых после того как температура предмета придет в норму, его внешний вид восстановится. При втором типе рисунок, проявившийся под воздействием тепла или холода, останется надолго. Обычно выбирают вариант, где при влиянии тепла или холода краска исчезает либо же, наоборот, проявляется.
Свойства
Такие краски не наносят вреда здоровью человека, они нетоксичны, не содержат радиации или других вредных веществ. Спектр их применения достаточно широк, поскольку они химически устойчивы и прекрасно сочетаются с другими химическими средами, например, с печатными красками, смолами, пластиком или резиной.
Диапазон воздействия
Если реакция краски происходит при температуре ниже 20 градусов, то в основном такой краситель используют в качестве индикатора для прохладительных напитков или других продуктов питания, которые должны подаваться холодными. Иными словами, положив бутылку в холодильник, человек сможет определить, когда она достаточно остынет, по этикетке, на которой видно изменение цвета.
При температурном диапазоне реагирования от 29 до 31 градуса краску в основном используют для вещей, с которыми соприкасается тело человека. Например, она прекрасно подойдет для создания современных уникальных футболок, меняющих свой цвет от прикосновений. Также термохромная краска идеальна для рекламных буклетов, призывающих человека дотронуться до них, и тогда от прикосновения появляется дополнительная информация.
Если краска реагирует на горячие температуры, превышающие 43 градуса, то она идеально подходит для чашек и другой посуды, предназначенной для горячих напитков и еды. Она может играть как декоративную роль для сувенира, так и иметь предупреждающий характер.
Использование
В основном подобную краску наносят на изделия из текстиля или керамики, реже - на пластиковые и стеклянные вещи, совсем редко - на бумагу. В последнее время также появилась возможность наносить термохромную краску на автомобили. Это позволяет не только улучшить внешний вид машины, но и снизить нагревание металла в жаркие летние дни. К тому же это идеальный вариант для тех, кто любит темный цвет авто, но не хочет, чтобы летом салон перегревался.
Самым популярным вариантом, где используется термохромная краска, стал рисунок на керамических и стеклянных кружках. Практически каждому мужчине хоть раз в жизни дарили такую посуду, где при наливании горячих напитков пропадала или появлялась часть изображения. Также эта разработка нашла свое применение в одежде. Кроме интересных декоративных и подарочных вариантов такие вещи могут предупреждать о замерзании или повышении температуры тела. Подобные узоры также наносят и на спецодежду.
Термохромная краска нашла свое применение и в производстве товаров для детей. Например, есть сигнальные обозначения на посуде и игрушках для купания, которые сообщают, какова температура еды или воды. На многих напитках, которые стоит пить охлажденными, также используются пометки, сделанные этой краской. Они могут наносится как на сами бутылки и банки, так и на этикетки.
Еще одно преимущество, которым обладает термохромная краска, - цена. Она совсем невысокая с учетом свойств этого материала (1500 руб. за 25-граммовую баночку, которой хватает надолго). Подобные решения привлекают клиентов и являются отличным рекламным ходом. Модные журналы и литература рекламного характера тоже часто используют краску, меняющую цвет при разных температурах. Еще одной сферой применения термохромных красителей является создание защитных элементов на лекарствах и косметике.
Светостойкость
Стоит отметить, что термохромная краска крайне чувствительна к воздействию ультрафиолета, поэтому специалисты не рекомендуют хранить ее в местах, где есть прямое попадание солнечных лучей. Практика показывает, что от солнечного воздействия продукт теряет свои свойства буквально за неделю. Кроме того, краска подвержена воздействию внешних факторов, так что при наружном использовании рекомендуется наносить поверх нее еще слой UV-защитного лака. Благодаря этому продукция будет служить дольше.
Метод использования
Главное, что стоит учитывать при смешивании краски, это то, какой эффект хочется получить в итоге. Например, что касается масляных и водных основ, то тут стоит добавлять от 5 до 30% основного компонента, а вот если краску наносят под давлением, то не больше 5%. В связи с этим, прежде чем начинать производство серии, стоит в любом случае протестировать оборудование и проверить, насколько качественный эффект получается в итоге.
Печать термохромными красками крайне простая и незатратная, при этом эффект от нее запоминающийся. А если провести все защитные манипуляции с дополнительным слоем покрытия, то изображение будет долговечным и надежным.