Сила лоуренса. Сила лоренца и все про нее. Применение силы Лоренца
Определение
Сила , действующая на движущуюся заряженную частицу в магнитном поле, равная:
называется силой Лоренца (магнитной силой) .
Исходя из определения (1) модуль рассматриваемой силы:
где – вектор скорости частицы, q – заряд частицы, – вектор магнитной индукции поля в точке нахождения заряда, – угол между векторами и . Из выражения (2) следует, что если заряд движется параллельно силовым линиям магнитного поля,то сила Лоренца равна нулю. Иногда силу Лоренца стараясь выделить, обозначают, используя индекс:
Направление силы Лоренца
Сила Лоренца (как и всякая сила) – это вектор. Ее направление перпендикулярно вектору скорости и вектору (то есть перпендикулярно плоскости, в которой находятся векторы скорости и магнитной индукции) и определяется правилом правого буравчика (правого винта) рис.1 (a). Если мы имеем дело с отрицательным зарядом, тонаправление силы Лоренца противоположно результату векторного произведения (рис.1(b)).
вектор направлен перпендикулярно плоскости рисунков на нас.
Следствия свойств силы Лоренца
Так как сила Лоренца направлена всегда перпендикулярно направлению скорости заряда, то ее работа над частицей равна нулю. Получается, что воздействуя на заряженную частицу при помощи постоянного магнитного поля нельзя изменить ее энергию.
Если магнитное поле однородно и направлено перпендикулярно скорости движения заряженной частицы, то заряд под воздействием силы Лоренца будет перемещаться по окружности радиуса R=const в плоскости, которая перпендикулярна вектору магнитной индукции. При этом радиус окружности равен:
где m – масса частицы,|q|- модуль заряда частицы, – релятивистский множитель Лоренца, c – скорость света в вакууме.
Сила Лоренца - это центростремительная сила. По направлению отклонения элементарной заряженной частицы в магнитном поле делают вывод о ее знаке (рис.2).
Формула силы Лоренца при наличии магнитного и электрического полей
Если заряженная частица перемещается в пространстве, в котором находятся одновременно два поля (магнитное и электрическое), то сила, которая действует на нее, равна:
где – вектор напряженности электрического поля в точке, в которой находится заряд. Выражение (4) было эмпирически получено Лоренцем. Сила , которая входит в формулу (4) так же называется силой Лоренца (лоренцевой силой). Деление лоренцевой силы на составляющие: электрическую и магнитную относительно, так как связано с выбором инерциальной системы отсчета. Так, если система отсчета будет двигаться с такой же скоростью , как и заряд, то в такой системе сила Лоренца, действующая на частицу, будет равна нулю.
Единицы измерения силы Лоренца
Основной единицей измерения силы Лоренца (как и любой другой силы) в системе СИ является: [F]=H
В СГС: [F]=дин
Примеры решения задач
Пример
Задание. Какова угловая скорость электрона, который движется по окружности в магнитном поле с индукцией B?
Решение. Так как электрон (частица имеющая заряд) совершает перемещение в магнитном поле, то на него действует сила Лоренца вида:
где q=q e – заряд электрона. Так как в условии сказано, что электрон движется по окружности, то это означает, что , следовательно, выражение для модуля силы Лоренца примет вид:
Сила Лоренцаявляется центростремительной и кроме того, по второму закону Ньютона будет в нашем случае равна:
Приравняем правые части выражений (1.2) и (1.3), имеем:
Из выражения (1.3) получим скорость:
Период обращения электрона по окружности можно найти как:
Зная период, можно найти угловую скорость как:
Ответ.
Пример
Задание. Заряженная частица (заряд q, масса m) со скоростью vвлетает в область, где имеется электрическое поле напряженностью E и магнитное поле с индукцией B. Векторы и совпадают по направлению. Каково ускорение частицы в моментначалаперемещения в полях, если ?
Нигде еще школьный курс физики так сильно не перекликается с большой наукой, как в электродинамике. В частности, ее краеугольный камень – воздействие на заряженные частицы со стороны электромагнитного поля, нашло широкое применение в электротехнике.
Формула силы Лоренца
Формула описывает взаимосвязь магнитного поля и основных характеристик движущегося заряда. Но сперва нужно разобраться, что же оно собой представляет.
Определение и формула силы Лоренца
В школе очень часто показывают опыт с магнитом и железными опилками на бумажном листе. Если расположить его под бумагой и слегка потрясти, то опилки выстроятся по линиям, которые принято называть линиями магнитной напряженности. Говоря простыми словами, это силовое поле магнита, которое окружает его подобно кокону. Оно замкнуто само на себя, то есть не имеет ни начала, ни конца. Это векторная величина, которая направлена от южного полюса магнита к северному.
Если бы в него влетела заряженная частица, то поле воздействовало бы на него очень любопытным образом. Она бы не затормозилась и не ускорилась, а всего лишь отклонилась в сторону. Чем она быстрее и чем сильнее поле, тем больше на нее действует эта сила. Ее назвали силой Лоренца в честь ученого-физика, впервые открывшего это свойство магнитного поля.
Вычисляют ее по специальной формуле:
здесь q – величина заряда в Кулонах, v – скорость, с которой движется заряд, в м/с, а B – индукция магнитного поля в единице измерения Тл (Тесла).
Направление силы Лоренца
Ученые заметили, что есть определенная закономерность между тем, как частица влетает в магнитное поле и тем, куда оно ее отклоняет. Чтобы ее было легче запомнить, они разработали специальное мнемоническое правило. Для его запоминания нужно совсем немного усилий, ведь в нем используется то, что всегда под рукой – рука. Точнее, левая ладонь, в честь чего оно носит название правила левой руки.
Итак, ладонь должна быть раскрыта, четыре пальца смотрят вперед, большой палец оттопырен в сторону. Угол между ними составляет 900. Теперь необходимо представить, что магнитный поток представляет собой стрелу, которая впивается в ладонь с внутренней стороны и выходит с тыльной. Пальцы при этом смотрят туда же, куда летит воображаемая частица. В таком случае большой палец покажет, куда она отклонится.
Интересно!
Важно отметить, что правило левой руки действует только для частиц со знаком «плюс». Чтобы узнать, куда отклонится отрицательный заряд, нужно четыре пальца направить в сторону, откуда летит частица. Все остальные манипуляции остаются прежними.
Следствия свойств силы Лоренца
Тело влетает в магнитном поле под каким-то определённым углом. Интуитивно понятно, что его величина имеет какое-то значение на характер воздействия на него поля, здесь нужно математическое выражение, чтобы стало понятнее. Следует знать, что как сила, так и скорость являются векторными величинами, то есть имеют направление. То же самое относится и к линиям магнитной напряженности. Тогда формулу можно записать следующим образом:
sin α здесь – это угол между двумя векторными величинами: скоростью и потоком магнитного поля.
Как известно, синус нулевого угла также равен нулю. Получается, что если траектория движения частицы проходит вдоль силовых линий магнитного поля, то она никуда не отклоняется.
В однородном магнитном поле силовые линии имеют одинаковое и постоянное расстояние друг от друга. Теперь представим, что в таком поле перпендикулярно этим линиям движется частица. В этом случае сила Лоуренса заставит двигаться ее по окружности в плоскости, перпендикулярной силовым линиям. Чтобы найти радиус этой окружности, нужно знать массу частицы:
Значение заряда не случайно взято как модуль. Это означает, что неважно, отрицательная или положительная частица входит в магнитное поле: радиус кривизны будет одинаков. Изменится только направление, в котором она полетит.
Во всех остальных случаях, когда заряд имеет определенный угол α с магнитным полем, он будет двигаться по траектории, напоминающей спираль с постоянным радиусом R и шагом h. Его можно найти по формуле:
Еще одним следствием свойств этого явления является тот факт, что она не совершает никакой работы. То есть она не отдает и не забирает энергию у частицы, а лишь меняет направление ее движения.
Самая яркая иллюстрация этого эффекта взаимодействия магнитного поля и заряженных частиц – это северное сияние. Магнитное поле, окружающее нашу планету, отклоняет заряженные частицы, прилетающие от Солнца. Но так как оно слабее всего на магнитных полюсах Земли, то туда проникают электрически заряженные частицы, вызывая свечение атмосферы.
Центростремительное ускорение, которое придается частицам, используется в электрических машинах – электродвигателях. Хотя уместнее здесь говорить о силе Ампера – частном проявлении силы Лоуренса, которая воздействует на проводник.
Принцип действия ускорителей элементарных частиц также основан на этом свойстве электромагнитного поля. Сверхпроводящие электромагниты отклоняют частицы от прямолинейного движения, заставляя их двигаться по кругу.
Самое любопытное заключается в том, что сила Лоренца не подчиняется третьему закону Ньютона, который гласит, что всякому действию есть свое противодействие. Связано это с тем, что Исаак Ньютон верил, что всякое взаимодействие на любом расстоянии происходит мгновенно, однако это не так. На самом деле оно происходит с помощью полей. К счастью, конфуза удалось избежать, так как физикам удалось переработать третий закон в закон сохранения импульса, который выполняется в том числе и для эффекта Лоуренса.
Формула силы Лоренца при наличии магнитного и электрического полей
Магнитное поле имеется не только у постоянных магнитов, но и у любого проводника электричества. Только в данном случае помимо магнитной составляющей, в ней присутствует еще и электрическая. Однако даже в этом электромагнитном поле эффект Лоуренса продолжает свое воздействие и определяется по формуле:
где v – скорость электрически заряженной частицы, q – ее заряд, B и E – напряженности магнитного и электрических полей поля.
Единицы измерения силы Лоренца
Как и большинство других физических величин, которые действуют на тело и изменяют его состояние, она измеряется в ньютонах и обозначается буквой Н.
Понятие напряженности электрического поля
Электромагнитное поле на самом деле состоит из двух половин – электрической и магнитной. Они точно близнецы, у которых все одинаково, но вот характер разный. А если приглядеться, то во внешности можно заметить небольшие различия.
То же самое касается и силовых полей. Электрическое поле тоже обладает напряженностью – векторной величиной, которая является силовой характеристикой. Она воздействует на частицы, которые в неподвижности находятся в нем. Само по себе оно не является силой Лоренца, ее просто нужно принимать во внимание, когда вычисляется воздействие на частицу в условиях наличия электрического и магнитного полей.
Напряженность электрического поля
Напряженность электрического поля воздействует только на неподвижный заряд и определяется по формуле:
Единицей измерения является Н/Кл или В/м.
Примеры задачи
Задача 1
На заряд в 0,005 Кл, который движется в магнитном поле с индукцией 0,3 Тл, действует сила Лоренца. Вычислить ее, если скорость заряда 200 м/с, а движется он под углом 450 к линиям магнитной индукции.
Задача 2
Определить скорость тела, имеющего заряд и которое движется в магнитном поле с индукцией 2 Тл под углом 900. Величина, с которой поле воздействует на тело, равна 32 Н, заряд тела – 5 × 10-3 Кл.
Задача 3
Электрон движется в однородном магнитном поле под углом 900 ее силовым линиям. Величина, с которой поле воздействует на электрон, равна 5 × 10-13 Н. Величина магнитной индукции равна 0,05 Тл. Определить ускорение электрона.
aц=v2R=6×10726,8×10-3=5×1017мс2
Электродинамика оперирует такими понятиями, которым трудно подобрать аналогию в обычном мире. Но это совсем не значит, что их невозможно постичь. С помощью различных наглядных экспериментов и природных явлений процесс познания мира электричества может стать по настоящему захватывающим.
Наряду с силой Ампера, кулоновского взаимодействия, электромагнитными полями в физике часто встречается понятие сила Лоренца. Это явление является одним из основополагающих в электротехнике и электронике, на ряду с , и прочими. Она воздействует на заряды, которые двигаются в магнитном поле. В этой статье мы кратко и понятно рассмотрим, что такое сила Лоренца и где она применяется.
Определение
Когда электроны движутся по проводнику – вокруг него возникает магнитное поле. В то же время, если поместить проводник в поперечное магнитное поле и двигать его – возникнет ЭДС электромагнитной индукции. Если через проводник, который находится в магнитном поле, протекает ток – на него действует сила Ампера.
Её величина зависит от протекающего тока, длины проводника, величины вектора магнитной индукции и синуса угла между линиями магнитного поля и проводником. Она вычисляются по формуле:
Рассматриваемая сила отчасти похожа на ту, что рассмотрена выше, но действует не на проводник, а на движущуюся заряженную частицу в магнитном поле. Формула имеет вид:
Важно! Сила Лоренца (Fл) действует на электрон, движущийся в магнитном поле, а на проводник – Ампера.
Из двух формул видно, что и в первом и во втором случае, чем ближе синус угла aльфа к 90 градусам, тем большее воздействие оказывает на проводник или заряд Fа или Fл соответственно.
Итак, сила Лоренца характеризует не изменение величины скорости, а то, какое происходит воздействие со стороны магнитного поля на заряженный электрон или положительный ион. При воздействии на них Fл не совершает работы. Соответственно изменяется именно направление скорости движения заряженной частицы, а не её величина.
Что касается единицы измерения силы Лоренца, как и в случае с другими силами в физике используется такая величина как Ньютон. Её составляющие:
Как направлена сила Лоренца
Чтобы определить направление силы Лоренца, как и с силой Ампера, работает правило левой руки. Это значит, чтобы понять, куда направлено значение Fл нужно раскрыть ладонь левой руки так, чтобы в руку входили линии магнитной индукции, а вытянутые четыре пальца указывали направление вектора скорости. Тогда большой палец, отогнутый под прямым углом к ладони, указывает направление силы Лоренца. На картинке ниже вы видите, как определить направление.
Внимание! Направление Лоренцового действия перпендикулярно движению частицы и линиям магнитной индукции.
При этом, если быть точнее, для положительно и отрицательно заряженных частиц имеет значение направление четырёх развернутых пальцев. Выше описанное правило левой руки сформулировано для положительной частицы. Если она заряжена отрицательно, то линии магнитной индукции должны быть направлены не в раскрытую ладонь, а в её тыльную сторону, а направление вектора Fл будет противоположным.
Теперь мы расскажем простыми словами, что даёт нам это явление и какое реальное воздействие она оказывает на заряды. Допустим, что электрон движется в плоскости, перпендикулярной направлению линий магнитной индукции. Мы уже упомянули, что Fл не воздействует на скорость, а лишь меняет направление движения частиц. Тогда сила Лоренца будет оказывать центростремительное воздействие. Это отражено на рисунке ниже.
Применение
Из всех сфер, где используется сила Лоренца, одной из масштабнейших является движение частиц в магнитном поле земли. Если рассмотреть нашу планету как большой магнит, то частицы, которые находятся около северного магнитного полюсов, совершают ускоренное движение по спирали. В результате этого происходит их столкновение с атомами из верхних слоев атмосферы, и мы видим северное сияние.
Тем не менее, есть и другие случаи, где применяется это явление. Например:
- Электронно-лучевые трубки. В их электромагнитных отклоняющих системах. ЭЛТ применялись больше чем 50 лет подряд в различных устройствах, начиная от простейшего осциллографа до телевизоров разных форм и размеров. Любопытно, что в вопросах цветопередачи и работы с графикой некоторые до сих пор используют ЭЛТ мониторы.
- Электрические машины – генераторы и двигатели. Хотя здесь скорее действует сила Ампера. Но эти величины можно рассматривать как смежные. Однако это сложные устройства при работе которых наблюдается воздействие многих физических явлений.
- В ускорителях заряженных частиц для того, чтобы задавать им орбиты и направления.
Заключение
Подведем итоги и обозначим четыре основных тезиса этой статьи простым языком:
- Сила Лоренца действует на заряженные частицы, которые движутся в магнитном поле. Это вытекает из основной формулы.
- Она прямо пропорциональна скорости заряженной частицы и магнитной индукции.
- Не влияет на скорость частицы.
- Влияет на направление частицы.
Её роль достаточно велика в «электрических» сферах. Специалист не должен упускать из вида основные теоретические сведения об основополагающих физических законах. Эти знания пригодятся, как и тем, кто занимается научной работой, проектированием и просто для общего развития.
Теперь вы знаете, что такое сила Лоренца, чему она равна и как действует на заряженные частицы. Если возникли вопросы, задавайте их в комментариях под статьей!
Материалы
Возникновение силы, действующей на электрический заряд, движущийся во внешнем электромагнитном поле
Анимация
Описание
Силой Лоренца называетсясила, действующая на заряженную частицу, движущуюся во внешнем электромагнитном поле.
Формула для силы Лоренца (F ) была впервые получена путем обобщения опытных фактов Х.А. Лоренцем в 1892 г. и представлена в работе «Электромагнитная теория Максвелла и ее приложение к движущимся телам». Она имеет вид:
F = qE + q, (1)
где q - заряженная частица;
Е - напряженность электрического поля;
B - вектор магнитной индукции, не зависящий от величины заряда и скорости его движения;
V - вектор скорости заряженной частицы относительно системы координат, в которой вычисляются величины F и B .
Первый член в правой части уравнения (1) - сила, действующая на заряженную частицу в электрическом поле F Е =qE, второй член - сила, действующая в магнитном поле:
F м = q. (2)
Формула (1) универсальна. Она справедлива как для постоянных, так и для переменных силовых полей, а также для любых значений скорости заряженной частицы. Она является важным соотношением электродинамики, так как позволяет связать уравнения электромагнитного поля с уравнениями движения заряженных частиц.
В нерелятивистском приближении сила F , как и любая другая сила, не зависит от выбора инерциальной системы отсчета. Вместе с тем магнитная составляющая силы Лоренца F м изменяется при переходе от одной системы отсчета к другой из-за изменения скорости, поэтому будет изменяться и электрическая составляющая F Е . В связи с этим разделение силы F на магнитную и электрическую имеет смысл только с указанием системы отсчета.
В скалярной форме выражение (2) имеет вид:
Fм = qVBsina , (3)
где a - угол между векторами скорости и магнитной индукции.
Таким образом магнитная часть силы Лоренца максимальна, если направление движения частицы перпендикулярно магнитному полю (a =p /2), и равна нулю, если частица движется вдоль направления поля В (a =0).
Магнитная сила F м пропорциональна векторному произведению , т.е. она перпендикулярна вектору скорости заряженной частицы и поэтому работы над зарядом не совершает. Это означает, что в постоянном магнитном поле под действием магнитной силы искривляется лишь траектория движущейся заряженной частицы, но энергия ее всегда остается неизменной , как бы частица ни двигалась.
Направление магнитной силы для положительного заряда определяется согласно векторному произведению (рис. 1).
Направление силы, действующей на положительный заряд в магнитном поле
Рис. 1
Для отрицательного заряда (электрона) магнитная сила направлена в противоположную сторону (рис. 2).
Направление силы Лоренца, действующей на электрон в магнитном поле
Рис. 2
Магнитное поле В направлено к читателю перпендикулярно рисунку. Электрическое поле отсутствует.
Если магнитное поле однородно и направлено перпендикулярно скорости, заряд массой m движется по окружности. Радиус окружности R определяется по формуле:
где - удельный заряд частицы.
Период обращения частицы (время одного оборота) не зависит от скорости, если скорость частицы много меньше скорости света в вакууме. В противном случае период обращения частицы возрастает в связи с возрастанием релятивистской массы.
В случае нерелятивистской частицы:
где - удельный заряд частицы.
В вакууме в однородном магнитном поле, если вектор скорости не перпендикулярен вектору магнитной индукции (a№p /2), заряженная частица под действием силы Лоренца (ее магнитной части) движется по винтовой линии с постоянной по величине скоростью V . При этом ее движение складывается из равномерного прямолинейного движения вдоль направления магнитного поля В со скоростью и равномерного вращательного движения в плоскости перпендикулярной полю В со скоростью (рис. 2).
Проекция траектории движения частицы на плоскость перпендикулярную В есть окружность радиуса:
период обращения частицы:
Расстояние h , которое проходит частица за время Т вдоль магнитного поля В (шаг винтовой траектории), определяется по формуле:
h = Vcos a T . (6)
Ось винтовой линии совпадает с направлением поля В , центр окружности перемещается вдоль силовой линии поля (рис. 3).
Движение заряженной частицы, влетевшей под углом a№p /2 в магнитное поле В
Рис. 3
Электрическое поле отсутствует.
Если электрическое поле E № 0, движение носит более сложный характер.
В частном случае, если векторы E иB параллельны, в процессе движения изменяется составляющая скорости V 11 , параллельная магнитному полю, вследствие чего меняется шаг винтовой траектории (6).
В том случае, если E иB не параллельны, происходит перемещение центра вращения частицы, называемое дрейфом, перпендикулярно полю В . Направление дрейфа определяется векторным произведением и не зависит от знака заряда.
Воздействие магнитного поля на движущиеся заряженные частицы приводят к перераспределению тока по сечению проводника, что находит свое проявление в термомагнитных и гальваномагнитных явлениях.
Эффект открыт нидерландским физиком Х.А. Лоренцем (1853-1928).
Временные характеристики
Время инициации (log to от -15 до -15);
Время существования (log tc от 15 до 15);
Время деградации (log td от -15 до -15);
Время оптимального проявления (log tk от -12 до 3).
Диаграмма:
Технические реализации эффекта
Техническая реализация действия силы Лоренца
Техническая реализация эксперимента по прямому наблюдению действия силы Лоренца на движущийся заряд как правило довольно сложна, так как соответствующие заряженные частицы имеют молекулярный характерный размер. Поэтому наблюдение их траектории в магнитном поле требует вакуумирования рабочего объема во избежание столкновений, искажающих траекторию. Так что специально такие демонстрационные установки как правило не создаются. Легче всего для демонстрации использовать стандартный секторный магнитный масс-анализатор Ниера, см. Эффект 409005, - действие которого целиком основано на силе Лоренца.
Применение эффекта
Типичное испольтзование в технике - датчик Холла, широко используемый в измерительной технике.
Пластинка из металла или полупроводника помещается в магнитное поле В . При пропускании через нее электрического тока плотности j в направлении перпендикулярном магнитному полю в пластине возникает поперечное электрическое поле, напряженность которого Е перпендикулярна обоим векторамj и В . По данным измерений находят В .
Объясняется этот эффект действием силы Лоренца на движущийся заряд.
Гальваномагнитные магнитометры. Масс-спектрометры. Ускорители заряженных частиц. Магнитогидродинамические генераторы.
Литература
1. Сивухин Д.В. Общий курс физики.- М.: Наука, 1977.- Т.3. Электричество.
2. Физический энциклопедический словарь.- М., 1983.
3. Детлаф А.А., Яворский Б.М. Курс физики.- М.: Высшая школа, 1989.
Ключевые слова
- электрический заряд
- магнитная индукция
- магнитное поле
- напряженность электрического поля
- сила Лоренца
- скорость частицы
- радиус окружности
- период обращения
- шаг винтовой траектории
- электрон
- протон
- позитрон
Разделы естественных наук:
В статье расскажем про магнитную силу Лоренца, как она действует на проводник, рассмотрим правило левой руки для силы Лоренца и момент силы действующий на контур с током.
Сила Лоренца — это сила, которая действует на заряженную частицу, падающую с определенной скоростью в магнитное поле. Величина этой силы зависит от величины магнитной индукции магнитного поля B , электрического заряда частицы q и скорости v , с которой частица падает в поле.
То, как магнитное поле B ведет себя по отношению к нагрузке полностью отличается от того, как это наблюдается для электрического поля Е . Прежде всего, поле B не реагирует на нагрузку. Однако когда нагрузка перемещается в поле B , появляется сила, которая выражается формулой, которую можно рассматривать как определение поля B :
Таким образом, видно, что поле B выступает в качестве силы, перпендикулярной к направлению вектора скорости V нагрузок и направление вектора B . Это можно проиллюстрировать на диаграмме:
На диаграмме q положительный заряд!
Единицы поля B могут быть получены из уравнения Лоренца. Таким образом, в системе СИ единица B равна 1 тесла (1T). В системе CGS полевой единицей является Гаусс (1G). 1T = 10 4 G
Для сравнения показана анимация движения как положительного, так и отрицательного заряда.
Когда поле B охватывает большую площадь, заряд q, движущийся перпендикулярно направлению вектора B, стабилизирует свое движение по круговой траектории. Однако, когда вектор v имеет компонент, параллельный вектору B, тогда путь заряда будет спиралью, как показано на анимации
Сила Лоренца на проводник с током
Сила, действующая на проводник с током, является результатом силы Лоренца, действующей на движущиеся носители заряда, электроны или ионы. Если в разделе направляющей длиной l, как на чертеже
полный заряд Q движется, тогда сила F, действующая на этот сегмент, равна
Частное Q / t является значением протекающего тока I и, следовательно, сила, действующая на участок с током, выражается формулой
Чтобы учесть зависимость силы F от угла между вектором B и осью отрезка, длина отрезка l была задана характеристиками вектора.
Только электроны движутся в металле под действием разности потенциалов; ионы металлов остаются неподвижными в кристаллической решетке. В растворах электролитов анионы и катионы подвижны.
Правило левой руки сила Лоренца — определяющее направление и возврат вектора магнитной (электродинамической) энергии.
Если левая рука расположена так, что линии магнитного поля направлены перпендикулярно внутренней поверхности руки (чтобы они проникали внутрь руки), а все пальцы — кроме большого пальца — указывают направление протекания положительного тока (движущаяся молекула), отклоненный большой палец указывает направление электродинамической силы, действующей на положительный электрический заряд, помещенный в это поле (для отрицательного заряда, сила будет противоположная).
Второй способ определения направления электромагнитной силы заключается в расположении большого, указательного и среднего пальцев под прямым углом. При таком расположении указательный палец показывает направление линий магнитного поля, направление среднего пальца — направление движения тока, а также направление большого пальца силы.
Момент силы, действующий на контур с током в магнитном поле
Момент силы, действующей на контур с током в магнитном поле (например, на проволочную катушку в обмотке электродвигателя), также определяется силой Лоренца. Если петля (отмеченная на схеме красным цветом) может вращаться вокруг оси, перпендикулярной полю B, и проводит ток I, то появляются две неуравновешенные силы F, действующие в стороны от рамы, параллельной оси вращения.