Как решать уравнения в квадратных скобках. Три полезных лайфхака, как решать квадратные уравнения быстрее, чем через дискриминант. Примеры решения квадратных уравнений
Решение уравнений способом «переброски»
Рассмотрим квадратное уравнение
ах 2 + bх + с = 0, где а? 0.
Умножая обе его части на а, получаем уравнение
а 2 х 2 + аbх + ас = 0.
Пусть ах = у, откуда х = у/а; тогда приходим к уравнению
у 2 + by + ас = 0,
равносильно данному. Его корни у 1 и у 2 найдем с помощью теоремы Виета.
Окончательно получаем х 1 = у 1 /а и х 1 = у 2 /а. При этом способе коэффициент а умножается на свободный член, как бы «перебрасывается» к нему, поэтому его называют способом «переброски». Этот способ применяют, когда можно легко найти корни уравнения, используя теорему Виета и, что самое важное, когда дискриминант есть точный квадрат.
* Пример.
Решим уравнение 2х 2 - 11х + 15 = 0.
Решение. «Перебросим» коэффициент 2 к свободному члену, в результате получим уравнение
у 2 - 11у + 30 = 0.
Согласно теореме Виета
у 1 = 5 х 1 = 5/2 x 1 = 2,5
у 2 = 6 x 2 = 6/2 x 2 = 3.
Ответ: 2,5; 3.
Свойства коэффициентов квадратного уравнения
А. Пусть дано квадратное уравнение ах 2 + bх + с = 0, где а? 0.
1) Если, а+ b + с = 0 (т.е. сумма коэффициентов равна нулю), то х 1 = 1,
Доказательство. Разделим обе части уравнения на а? 0, получим приведенное квадратное уравнение
x 2 + b/a * x + c/a = 0.
Согласно теореме Виета
x 1 + x 2 = - b/a,
x 1 x 2 = 1* c/a.
По условию а - b + с = 0, откуда b = а + с. Таким образом,
x 1 + x 2 = - а + b/a= -1 - c/a,
x 1 x 2 = - 1* (- c/a),
т.е. х 1 = -1 и х 2 = c/a, что м требовалось доказать.
- * Примеры.
- 1) Решим уравнение 345х 2 - 137х - 208 = 0.
Решение. Так как а + b + с = 0 (345 - 137 - 208 = 0), то
х 1 = 1, х 2 = c/a = -208/345.
Ответ: 1; -208/345.
2) Решим уравнение 132х 2 - 247х + 115 = 0.
Решение. Так как а + b + с = 0 (132 - 247 + 115 = 0), то
х 1 = 1, х 2 = c/a = 115/132.
Ответ: 1; 115/132.
Б. Если второй коэффициент b = 2k - четное число, то формулу корней
* Пример.
Решим уравнение 3х2 - 14х + 16 = 0.
Решение. Имеем: а = 3, b = - 14, с = 16, k = - 7;
Напоминаем, что полное квадратное уравнение, это уравнение вида:
Решение полных квадратных уравнений немного сложнее (совсем чуть-чуть), чем приведенных.
Запомни, любое квадратное уравнение можно решить с помощью дискриминанта!
Даже неполное.
Остальные способы помогут сделать это быстрее, но если у тебя возникают проблемы с квадратными уравнениями, для начала освой решение с помощью дискриминанта.
1. Решение квадратных уравнений с помощью дискриминанта.
Решение квадратных уравнений этим способом очень простое, главное запомнить последовательность действий и пару формул.
Если, то уравнение имеет 2 корня. Нужно особое внимание обратить на шаг 2.
Дискриминант D указывает нам на количество корней уравнения.
- Если, то формула на шаге сократится до. Таким образом, уравнение будет иметь всего корень.
- Если, то мы не сможем извлечь корень из дискриминанта на шаге. Это указывает на то, что уравнение не имеет корней.
Обратимся к геометрическому смыслу квадратного уравнения.
График функции является параболой:
Вернемся к нашим уравнениям и рассмотрим несколько примеров.
Пример 9
Решите уравнение
Шаг 1 пропускаем.
Шаг 2.
Находим дискриминант:
А значит уравнение имеет два корня.
Шаг 3.
Ответ:
Пример 10
Решите уравнение
Уравнение представлено в стандартном виде, поэтому Шаг 1 пропускаем.
Шаг 2.
Находим дискриминант:
А значит уравнение имеет один корень.
Ответ:
Пример 11
Решите уравнение
Уравнение представлено в стандартном виде, поэтому Шаг 1 пропускаем.
Шаг 2.
Находим дискриминант:
Азначит мы не сможем извлечь корень из дискриминанта. Корней уравнения не существует.
Теперь мы знаем, как правильно записывать такие ответы.
Ответ: Корней нет
2. Решение квадратных уравнений с помощью теоремы Виета
Если ты помнишь, то есть такой тип уравнений, которые называются приведенными (когда коэффициент а равен):
Такие уравнения очень просто решать, используя теорему Виета:
Сумма корней приведенного квадратного уравнения равна, а произведение корней равно.
Нужно всего лишь подобрать такую пару чисел, произведение которых равно свободному члену уравнения, а сумма - второму коэффициенту, взятому с обратным знаком.
Пример 12
Решите уравнение
Это уравнение подходит для решения с использованием теоремы Виета, т.к. .
Сумма корней уравнения равна, т.е. получаем первое уравнение:
А произведение равно:
Составим и решим систему:
- и. Сумма равна;
- и. Сумма равна;
- и. Сумма равна.
и являются решением системы:
Ответ: ; .
Пример 13
Решите уравнение
Ответ:
Пример 14
Решите уравнение
Уравнение приведенное, а значит:
Ответ:
КВАДРАТНЫЕ УРАВНЕНИЯ. СРЕДНИЙ УРОВЕНЬ
Что такое квадратное уравнение?
Другими словами, квадратное уравнение - это уравнение вида, где - неизвестное, - некоторые числа, причем.
Число называют старшим или первым коэффициентом квадратного уравнения, - вторым коэффициентом , а - свободным членом .
Потому что если, уравнение сразу станет линейным, т.к. пропадет.
При этом и могут быть равны нулю. В этом стулчае уравнение называют неполным .
Если же все слагаемые на месте, то есть, уравнение - полное .
Методы решения неполных квадратных уравнений
Для начала разберем методы решений неполных квадратных уравнений - они проще.
Можно выделить типа таких уравнений:
I. , в этом уравнении коэффициент и свободный член равны.
II. , в этом уравнении коэффициент равен.
III. , в этом уравнении свободный член равен.
Теперь рассмотрим решение каждого из этих подтипов.
Очевидно, что данное уравнение всегда имеет только один корень:
Число, возведенное в квадрат, не может быть отрицательным, ведь при перемножении двух отрицательных или двух положительных чисел результатом всегда будет положительное число. Поэтому:
если, то уравнение не имеет решений;
если, имеем учаем два корня
Эти формулы не нужно запоминать. Главное помнить, что не может быть меньше.
Примеры решения квадратных уравнений
Пример 15
Ответ:
Никогда не забывай про корни с отрицательным знаком!
Пример 16
Квадрат числа не может быть отрицательным, а значит у уравнения
нет корней.
Чтобы коротко записать, что у задачи нет решений, используем значок пустого множества.
Ответ:
Пример 17
Итак, это уравнение имеет два корня: и.
Ответ:
Вынесем общим множитель за скобки:
Произведение равно нулю, если хотя бы один из множителей равен нулю. А это значит, что уравнение имеет решение, когда:
Итак, данное квадратное уравнение имеет два корня: и.
Пример:
Решите уравнение.
Решение:
Разложим левую часть уравнения на множители и найдем корни:
Ответ:
Методы решения полных квадратных уравнений
1. Дискриминант
Решать квадратные уравнения этим способом легко, главное запомнить последовательность действий и пару формул. Запомни, любое квадратное уравнение можно решить с помощью дискриминанта! Даже неполное.
Ты заметил корень из дискриминанта в формуле для корней?
Но ведь дискриминант может быть отрицательным.
Что делать?
Нужно особое внимание обратить на шаг 2. Дискриминант указывает нам на количество корней уравнения.
- Если, то уравнение имеет корня:
- Если, то уравнение имеет одинаковых корня, а по сути, один корень:
Такие корни называются двукратными.
- Если, то корень из дискриминанта не извлекается. Это указывает на то, что уравнение не имеет корней.
Почему возможно разное количество корней?
Обратимся к геометрическому смыслу квадратного уравнения. График функции является параболой:
В частном случае, которым является квадратное уравнение, .
А это значит, что корни квадратного уравнения, это точки пересечения с осью абсцисс (ось).
Парабола может вообще не пересекать ось, либо пересекать ее в одной (когда вершина параболы лежит на оси) или двух точках.
Кроме того, за направление ветвей параболы отвечает коэффициент. Если, то ветви параболы направлены вверх, а если - то вниз.
4 примера решения квадратных уравнений
Пример 18
Ответ:
Пример 19
Ответ: .
Пример 20
Ответ:
Пример 21
А значит, решений нет.
Ответ: .
2. Теорема Виета
Использовать теорему Виета очень легко.
Нужно всего лишь подобрать такую пару чисел, произведение которых равно свободному члену уравнения, а сумма - второму коэффициенту, взятому с обратным знаком.
Важно помнить, что теорему Виета можно применять только в приведенных квадратных уравнениях ().
Рассмотрим несколько примеров:
Пример 22
Решите уравнение.
Решение:
Это уравнение подходит для решения с использованием теоремы Виета, т.к. . Остальные коэффициенты: ; .
Сумма корней уравнения равна:
А произведение равно:
Подберем такие пары чисел, произведение которых равно, и проверим, равна ли их сумма:
- и. Сумма равна;
- и. Сумма равна;
- и. Сумма равна.
и являются решением системы:
Таким образом, и - корни нашего уравнения.
Ответ: ; .
Пример 23
Решение:
Подберем такие пары чисел, которые в произведении дают, а затем проверим, равна ли их сумма:
и: в сумме дают.
и: в сумме дают. Чтобы получить, достаточно просто поменять знаки предполагаемых корней: и, ведь произведение.
Ответ:
Пример 24
Решение:
Свободный член уравнения отрицательный, а значит и произведение корней - отрицательное число. Это возможно только если один из корней отрицательный, а другой - положительный. Поэтому сумма корней равна разности их модулей .
Подберем такие пары чисел, которые в произведении дают, и разность которых равна:
и: их разность равна - не подходит;
и: - не подходит;
и: - не подходит;
и: - подходит. Остается только вспомнить, что один из корней отрицательный. Так как их сумма должна равняться, то отрицательным должен быть меньший по модулю корень: . Проверяем:
Ответ:
Пример 25
Решите уравнение.
Решение:
Уравнение приведенное, а значит:
Свободный член отрицателен, а значит и произведение корней отрицательно. А это возможно только тогда, когда один корень уравнения отрицателен, а другой положителен.
Подберем такие пары чисел, произведение которых равно, а затем определим, какой корней должен иметь отрицательный знак:
Очевидно, что под первое условие подходят только корни и:
Ответ:
Пример 26
Решите уравнение.
Решение:
Уравнение приведенное, а значит:
Сумма корней отрицательна, а это значит что, по крайней мере, один из корней отрицателен. Но поскольку их произведение положительно, то значит оба корня со знаком минус.
Подберем такие пары чисел, произведение которых равно:
Очевидно, что корнями являются числа и.
Ответ:
Согласись, это очень удобно - придумывать корни устно, вместо того, чтобы считать этот противный дискриминант.
Старайся использовать теорему Виета как можно чаще!
Но теорема Виета нужна для того, чтобы облегчить и ускорить нахождение корней.
Чтобы тебе было выгодно ее использовать, ты должен довести действия до автоматизма. А для этого порешай-ка еще пяток примеров.
Но не жульничай: дискриминант использовать нельзя! Только теорему Виета!
5 примеров на теорему Виета для самостоятельной работы
Пример 27
Задание 1. {{x}^{2}}-8x+12=0
По теореме Виета:
Как обычно, начинаем подбор с произведения:
Не подходит, так как сумма;
: сумма - то что надо.
Ответ: ; .
Пример 28
Задание 2.
И снова наша любимая теорема Виета : в сумме должно получиться, а произведение равно.
Но так как должно быть не, а, меняем знаки корней: и (в сумме).
Ответ: ; .
Пример 29
Задание 3.
Хм… А где тут что?
Надо перенести все слагаемые в одну часть:
Сумма корней равна, произведение.
Так, стоп! Уравнение-то не приведенное.
Но теорема Виета применима только в приведенных уравнениях.
Так что сперва нужно уравнение привести.
Если привести не получается, бросай эту затею и решай другим способом (например, через дискриминант).
Напомню, что привести квадратное уравнение - значит сделать старший коэффициент равным:
Тогда сумма корней равна, а произведение.
Тут подобрать проще простого: ведь - простое число (извини за тавтологию).
Ответ: ; .
Пример 30
Задание 4.
Свободный член отрицательный.
Что в этом особенного?
А то, что корни будут разных знаков.
И теперь во время подбора проверяем не сумму корней, а разность их модулей: эта разность равна, а произведение.
Итак, корни равны и, но один из них с минусом.
Теорема Виета говорит нам, что сумма корней равна второму коэффициенту с обратным знаком, то есть.
Значит, минус будет у меньшего корня: и, так как.
Ответ: ; .
Пример 31
Задание 5.
Что нужно сделать первым делом?
Правильно, привести уравнение:
Снова: подбираем множители числа, и их разность должна равняться:
Корни равны и, но один из них с минусом. Какой? Их сумма должна быть равна, значит, с минусом будет больший корень.
Ответ: ; .
Подведем итог
- Теорема Виета используется только в приведенных квадратных уравнениях.
- Используя теорему Виета можно найти корни подбором, устно.
- Если уравнение не приводится или не нашлось ни одной подходящей пары множителей свободного члена, значит целых корней нет, и нужно решать другим способом (например, через дискриминант).
3. Метод выделения полного квадрата
Если все слагаемые, содержащие неизвестное, представить в виде слагаемых из формул сокращенного умножения - квадрата суммы или разности - то после замены переменных можно представить уравнение в виде неполного квадратного уравнения типа.
Например:
Пример 32
Решите уравнение: .
Решение:
Ответ:
Пример 33
Решите уравнение: .
Решение:
Ответ:
В общем виде преобразование будет выглядеть так:
Отсюда следует: .
Ничего не напоминает?
Это же дискриминант! Вот именно, формулу дискриминанта так и получили.
КВАДРАТНЫЕ УРАВНЕНИЯ. КОРОТКО О ГЛАВНОМ
Квадратное уравнение - это уравнение вида, где - неизвестное, - коэффициенты квадратного уравнения, - свободный член.
Полное квадратное уравнение - уравнение, в котором коэффициенты, не равны нулю.
Приведенное квадратное уравнение - уравнение, в котором коэффициент, то есть: .
Неполное квадратное уравнение - уравнение, в котором коэффициент и или свободный член с равны нулю:
- если коэффициент, уравнение имеет вид: ,
- если свободный член, уравнение имеет вид: ,
- если и, уравнение имеет вид: .
1. Алгоритм решения неполных квадратных уравнений
1.1. Неполное квадратное уравнение вида, где, :
1) Выразим неизвестное: ,
2) Проверяем знак выражения:
- если, то уравнение не имеет решений,
- если, то уравнение имеет два корня.
1.2. Неполное квадратное уравнение вида, где, :
1) Вынесем общим множитель за скобки: ,
2) Произведение равно нулю, если хотя бы один из множителей равен нулю. Следовательно, уравнение имеет два корня:
1.3. Неполное квадратное уравнение вида, где:
Данное уравнение всегда имеет только один корень: .
2. Алгоритм решения полных квадратных уравнений вида где
2.1. Решение с помощью дискриминанта
1) Приведем уравнение к стандартному виду: ,
2) Вычислим дискриминант по формуле: , который указывает на количество корней уравнения:
3) Найдем корни уравнения:
- если, то уравнение имеет корня, которые находятся по формуле:
- если, то уравнение имеет корень, который находится по формуле:
- если, то уравнение не имеет корней.
2.2. Решение с помощью теоремы Виета
Сумма корней приведенного квадратного уравнения (уравнения вида, где) равна, а произведение корней равно, т.е. , а.
2.3. Решение методом выделения полного квадрата
5х (х - 4) = 0
5 х = 0 или х - 4 = 0
х = ± √ 25/4
Научившись решать уравнения первой степени, безусловно, хочется работать с другими, в частности, с уравнениями второй степени, которые по-другому называются квадратными.
Квадратные уравнения - это уравнения типа ах ² + bx + c = 0, где переменной является х, числами будут - а, b, с, где а не равняется нулю.
Если в квадратном уравнении один или другой коэффициент (с или b) будет равняться нулю, то это уравнение будет относиться к неполному квадратному уравнению.
Как решить неполное квадратное уравнение, если ученики до сих пор умели решать только уравнения первой степени? Рассмотрим неполные квадратные уравнения разных видов и несложные способы их решения.
а) Если коэффициент с будет равен 0, а коэффициент b не будет равен нулю, то ах ² + bх + 0 = 0 сводится к уравнению вида ах ² + bх = 0.
Чтобы решить такое уравнение, нужно знать формулу решения неполного квадратного уравнения, которая заключается в том, чтобы левую часть его разложить на множители и позже использовать условие равенства произведения нулю.
Например, 5х ² - 20х = 0. Раскладываем левую часть уравнения на множители, при этом совершая обычную математическую операцию: вынос общего множителя за скобки
5х (х - 4) = 0
Используем условие, гласящее, что произведения равны нулю.
5 х = 0 или х - 4 = 0
Ответом будет: первый корень - 0; второй корень - 4.
б) Если b = 0, а свободный член не равен нулю, то уравнение ах ² + 0х + с = 0 сводится к уравнению вида ах ² + с = 0. Решают уравнения двумя способами: а) раскладывая многочлен уравнения в левой части на множители; б) используя свойства арифметического квадратного корня. Такое уравнение решается одним из методов, например:
х = ± √ 25/4
х = ± 5/2. Ответом будет: первый корень равен 5/2; второй корень равен - 5/2.
в) Если b будет равен 0 и с будет равен 0, то ах ² + 0 + 0 = 0 сводится к уравнению вида ах ² = 0. В таком уравнении x будет равен 0.
Как видите, неполные квадратные уравнения могут иметь не более двух корней.
Превращение полного квадратного уравнения в неполное выглядит так (для случая \(b=0\)):
Для случаев, когда \(с=0\) или когда оба коэффициента равны нулю - всё аналогично.
Обратите внимание, что про равенство нулю \(a\) речи не идет, оно равно нулю быть не может, так как в этом случае превратиться в :
Решение неполных квадратных уравнений
Прежде всего, надо понимать, что неполное квадратное уравнение все-таки является , поэтому может быть решено также как и обычное квадратное (через ). Для этого просто дописываем недостающий компонент уравнения с нулевым коэффициентом.
Пример
: Найдите корни уравнения \(3x^2-27=0\)
Решение
:
У нас неполное квадратное уравнение с коэффициентом \(b=0\). То есть, мы можем записать уравнение в следующем виде: |
||
\(3x^2+0\cdot x-27=0\) |
Фактически здесь то же самое уравнение, что и в начале, но теперь его можно решать как обычное квадратное. Сначала выписываем коэффициенты. |
|
\(a=3;\) \(b=0;\) \(c=-27;\) |
Вычислим дискриминант по формуле \(D=b^2-4ac\) |
|
\(D=0^2-4\cdot3\cdot(-27)=\) |
Найдем корни уравнения по формулам |
|
\(x_{1}=\)\(\frac{-0+\sqrt{324}}{2\cdot3}\) \(=\)\(\frac{18}{6}\) \(=3\) \(x_{2}=\)\(\frac{-0-\sqrt{324}}{2\cdot3}\) \(=\)\(\frac{-18}{6}\) \(=-3\) |
|
Записываем ответ |
Ответ : \(x_{1}=3\); \(x_{2}=-3\)
Пример
: Найдите корни уравнения \(-x^2+x=0\)
Решение
:
Опять неполное квадратное уравнение, но теперь нулю равен коэффициент \(c\). Записываем уравнение как полное. |
||
Неполное квадратное уравнение отличаются от классических (полных) уравнений тем, что его множители или свободный член равны нулю. Графиком таких функций являются параболы. В зависимости от общего вида их делят на 3 группы. Принципы решения для всех типов уравнений одинаковы.
Ничего сложного в определении типа неполного многочлена нет. Рассмотреть основные отличия лучше всего на наглядных примерах:
- Если b = 0, то уравнение имеет вид ax 2 + c = 0.
- Если c = 0, то решать следует выражение ax 2 + bx = 0.
- Если b = 0 и c = 0, то многочлен превращается в равенство типа ax 2 = 0.
Последний случай является скорее теоретической возможностью и никогда не встречается в заданиях для проверки знаний, так как единственно верное значение переменной x в выражении – это ноль. В дальнейшем будет рассмотрены способы и примеры решения неполных квадратных уравнений 1) и 2) видов.
Общий алгоритм поиска переменных и примеры с решением
Не зависимо от разновидности уравнения алгоритм решения сводится к следующим шагам:
- Привести выражение к удобному для поиска корней виду.
- Произвести вычисления.
- Записать ответ.
Решать неполные уравнения проще всего, разложив на множители левую часть и оставив ноль в правой. Таким образом, формула неполного квадратного уравнения для поиска корней сводится к вычислению значения x для каждого из множителей.
Научиться способам решения можно только лишь на практике, поэтому рассмотрим конкретный пример нахождения корней неполного уравнения:
Как видно, в данном случае b = 0. Разложим левую часть на множители и получим выражение:
4(x – 0,5) ⋅ (x + 0,5) = 0.
Очевидно, что произведение равно нулю, когда хотя бы один из множителей равен нулю. Подобным требованиям отвечают значения переменной x1 = 0,5 и (или) x2 = -0,5.
Для того, чтобы легко и быстро справляться с задачей разложения квадратного трехчлена на множители, следует запомнить следующую формулу:
Если в выражении отсутствует свободный член, задача многократно упрощается. Достаточно будет всего лишь найти и вынести за скобки общий знаменатель. Для наглядности рассмотрим пример, как решать неполные квадратные уравнения вида ax2 + bx = 0.
Вынесем переменную x за скобки и получим следующее выражение:
x ⋅ (x + 3) = 0.
Руководствуясь логикой, приходим к выводу, что x1 = 0, а x2 = -3.
Традиционный способ решения и неполные квадратные уравнения
Что же будет, если применить формулу дискриминанта и попытаться найти корни многочлена, при коэффициентах равных нулю? Возьмем пример из сборника типовых заданий для ЕГЭ по математики 2017 года, решим его с помощью стандартных формул и методом разложения на множители.
7x 2 – 3x = 0.
Рассчитаем значение дискриминант: D = (-3)2 – 4 ⋅ (-7) ⋅ 0 = 9. Получается, многочлен имеет два корня:
Теперь, решим уравнение разложением на множители и сравним результаты.
X ⋅ (7x + 3) = 0,
2) 7x + 3 = 0,
7x = -3,
x = -.
Как видно, оба метода дают одинаковый результат, но решить уравнение вторым способ получилось гораздо проще и быстрее.
Теорема Виета
А что же делать с полюбившейся теоремой Виета? Можно ли применять данный метод при неполном трехчлене? Попробуем разобраться в аспектах приведения неполных уравнений к классическому виду ax2 + bx + c = 0.
На самом деле применять теорему Виета в данном случае возможно. Необходимо лишь привести выражение к общему виду, заменив недостающие члены нулем.
Например, при b = 0 и a = 1, дабы исключить вероятность путаницы следует записать задание в виде: ax2 + 0 + c = 0. Тогда отношение суммы и произведения корней и множителей многочлена можно выразить следующим образом:
Теоретические выкладки помогают ознакомиться с сутью вопроса, и всегда требуют отработки навыка при решении конкретных задач. Снова обратимся к справочнику типовых заданий для ЕГЭ и найдем подходящий пример:
Запишем выражение в удобном для применения теоремы Виета виде:
x 2 + 0 – 16 = 0.
Следующим шагом составим систему условий:
Очевидно, что корнями квадратного многочлена будут x 1 = 4 и x 2 = -4.
Теперь, потренируемся приводить уравнение к общему виду. Возьмем следующий пример: 1/4× x 2 – 1 = 0
Для того, чтобы применить к выражению теорему Виета необходимо избавиться от дроби. Перемножим левую и правую части на 4, и посмотрим на результат: x2– 4 = 0. Полученное равенство готово для решения теоремой Виета, но гораздо проще и быстрее получить ответ просто перенеся с = 4 в правую часть уравнения: x2 = 4.
Подводя итог, следует сказать, что лучшим способом решения неполных уравнений является разложения на множители, является самым простым и быстрым методом. При возникновении затруднений в процессе поиска корней можно обратиться к традиционному методу нахождения корней через дискриминант.